Prikaz podataka o brojanju prometa

2022-05-30

Kako isti podatak (informaciju) prikazati na različite načine i uvijek biti iskren.

Riječ manipulacija u općem govoru (opravdano) nema dobru konotaciju. Prometni inženjeri rade upravo to, manipuliraju podatcima na različite načine kako bi spoznali ili zaključili o nekoj stvari. Uz pretpostavku da znaju svoj posao, u radu prometnih inženjera riječ manipulacija može poprimiti negativni kontekst samo u dva slučaja: (1) ako se mijenjaju podatci prema "željenom rješenju" ili (2) se interpretiraju (grupiraju) rezultati prema "željenom rješenju" (interesna prilagodba). Ovdje isključujemo slučajne (nenamjerne, sintaksne) greške koje se brzo prepoznaju i riješe savjesnim postupanjem.

Za primjer teme ću uzeti brojanje u cestovnom prometu. Radi se o podatcima iz travnja 2022. i aktualnog projekta pa ne mogu otkriti lokaciju i namjenu podataka. Podaci su sa jednog automatskog brojila prometa u jednoj prometnoj traci u jednom radnom danu na cesti u Zagrebu. Budući se radi o vremenskom nizu podataka moramo primijeniti prikladne metode analize vremenskih nizova (serija).

Najčešći podatci u cestovnom prometu su satna opterećenja i nešto detaljniji podatci o strukturi prometnog toka i načinu odvijanja prometa u karakterističnim (vršnim) satima. Zato najčešće vidimo ovakav grafički prikaz i možemo odmah objektivno zaključiti nekoliko stvari:

  • blizina nekog jačeg atraktora motornog prometa ili se nalazimo na važnijem cestovnom koridoru,
  • zaključujemo o jačini i/ili važnosti jer je vršni dnevni promet gotovo 800 voz/h (u jednoj prometnoj traci),
  • promet je puno jači poslijepodne, ali ima i određeni akcent ujutro;
  • prethodne dvije napomene govore da ne možemo govoriti samo o komercijalnim i javnim sadržajima u blizini brojila, očito postoji i neki segment stanovanja (prebivanja) u blizini,
  • tipična "gradska priča"; u dnevnom periodu 06:00 - 22:00 sata odvije se 93 % prometa, a 7 % u noćnim satima.

Sigurno postoji još nekoliko mogućih općih i istinitih zaključaka, ali i ovo je dovoljna ilustracija kako podatci mogu "pričati". Kada bi imali podatke i za vikend (subota i nedjelja) odmah bi mogli špekulirati da li se u blizini nalaze neki veći javni i komercijalni sadržaji. Tada bi kroz cjelovitu manipulaciju podataka, poznajući prometne procese područja gdje se brojilo nalazi (Zagreb), došli do nekih objektivnih zaključaka o prometnoj funkciji područja (ceste, ulice) gdje je brojilo smješteno.

Budući se radi o automatskom brojilu prometa dostupni su detaljni podatci; znamo točno vrijeme (sekundu) prolaska svakog vozila i njegovu kategoriju. Za ilustraciju teme usredotočit ću se isključivo na količinu prometa kako bi pokazao da različiti pristupi, ovisno o namjeni i problemu, objektivno prikazuju rezultate iako se radi o različitim brojčanim iskazima.

Podatke sam grupirao u klase po 10 minuta. Razlog? Današnji komercijalni sustavi upravljanja prometom rade temeljem 15-minutnih prognoza i/ili stanja prometa pa je opravdano analizirati u intervalima od 10 minuta. Drugo, treba odrediti pragove prometa. Odlučio sam se za uobičajene vrijednosti:

  • mali promet: do 33 voz/10 min (200 voz/h),
  • umjereni: do 75 voz/10 min (450 voz/h),
  • srednji: do 100 voz/10 min (600 voz/h),
  • veliki; do 133 voz/10 min (800 voz/h),
  • vršni; veći od 133/10 min (800 voz/h).

Kako to izgleda pokazuje sljedeći graf. Postoje 144 intervala u danu. Sada već dolazimo do prvog važnog podatka, gledajući promet cijelog dana:

  • 56 % intervala spada u mali i umjereni promet,
  • 24 % intervala je srednji promet,
  • 18 % intervala je velik promet, a
  • 2 % intervala pripada vršnom prometu.

Ako promatramo dnevni period od 6:00 do 22:00 sata, onda je situacija:

  • 34 % intervala spada u mali i umjereni promet,
  • 37 % intervala je srednji promet,
  • 26 % intervala je velik promet, a
  • 3 % intervala pripada vršnom prometu.

Oba prethodna grafička prikaza su točna, a ipak si bitno razlikuju. U prvom grafu vršni sat predstavljen je vrijednošću od 791 voz/h što ipak ne prekoračuje granicu vršnog prometa od 800 voz/h. Drugi graf pokazuje da tri 10-minutna vršna intervala ulaze u područje vršnog prometa:

  • 15:50 - 16:00 s prometom 148 voz/10 min (što je ekvivalent 888 voz/h),
  • 16:20 - 16:30 s prometom 134 voz/10 min (804 voz/h),
  • 16:30 - 16:40 s prometom 144 voz/10 min (864 voz/h).

Ako svedemo ova tri intervala na satni promet, onda u vremenu 15:50 - 16:50 brojilom prođe 804 voz/h. Razlika 10 minuta od vremena punog sata čini malu (804 prema 791 ili 1,6 %), ali opet znakovitu razliku između dva područja stanja prometa.

Sada možemo krenuti s prvom manipulacijom; deskriptivnom statistikom. Grafički prikaz (box plot) pokazuje raspon podataka od 1 voz/10min do maksimalno 148 voz/10min. Promatrajući sve veličine zaokružene na cijeli broj, prvi kvartil je 22 voz/10 min, a treći 92 voz/10 min, odnosno 50 % dnevnog prometa odvija se u tim granicama. Medijan je 68 voz/10min, a srednja vrijednost 62 voz/10 min. Radi se o maloj pozitivnoj asimetričnoj distribuciji; medijan je nešto veći od aritmetičke sredine. Pozitivnu asimetričnu distribuciju, osim box plot prikaza, daje i prikaz distribucije klasa prometnih opterećenja.

Budući da se 93 % prometa odvija u dnevnom periodu i da nam "smeta" klasa s malim prometnim opterećenjem jer razdioba nema željeni zvonoliki oblik, promatramo dnevni period od 6:00 do 22:00 sata. U tom slučaju dobivamo "lijepe" podatke s kojima možemo napraviti "lijepe" stvari. Klasičan interval od 6:00 do 22:00 i pomaknuti za jedan sat pokazuju sličnu distribuciju podataka: minimum je 29 voz/10min, maksimum 148 voz/10min, a medijan i srednja vrijednost su jako blizu (medijan je 84,5 a srednja vrijednost 85,9 voz/10min), prvi kvartil je 88 a treći 102 voz/10min. Distribucija je zvonolika i upućuje na normalnu statističku razdiobu.

Kada se malo analizira gornji histogram potvrđuje se pretpostavka distribucije dnevnog prometa po normalnoj razdiobi. Srednja vrijednost x(sr) = 85,8 voz/10 min, standardna devijacija je stdev = 23,7 voz/10 min. Budući da rubne klase imaju manje od pet opažanja moraju se grupirati u zajedničke klase pa imamo najmanju klasu 29 - 59 sa 10 opažanja te najveću 119 - 149 sa isto 10 opažanja. Tako formirana razdioba za razinu značajnosti od 0,05 provjerom putem hi-kvadrat testa zadovoljava hipotezu o normalnoj razdiobi dnevnog prometnog opterećenja u 10 minutnim intervalima; izračunati hi-kvadrat je manji od teoretskog (sa tri stupnja slobode): 5,60 < 7,81. Budući da vrijedi normalna razdioba odmah možemo putem srednje vrijednosti i standardne devijacije definirati:

  • 68 % dnevnog prometnog opterećenja nalazi se u intervalu 62 - 110 voz/10 min; x(sr)±stdev,
  • 95 % dnevnog prometnog opterećenja nalazi se u intervalu 39 - 133 voz/10 min; x(sr)±2×stdev,
  • 99 % dnevnog prometnog opterećenja nalazi se u intervalu 15 - 157 voz/10 min; x(sr)±3×stdev.

Sljedeća manipulacija može se odnositi na upravljanje prometom. Prometom se ne upravlja putem jednog parametra (podatka), ovo se samo ilustracija primjene jedne često korištene metode. Na primjer, pripremili smo prometne planove (scenarije) za upravljanje različitim količinama prometa prema već opisanim granicama: 33 - 75 - 100 - 133 - 133+ voz/10min. U tom slučaju, kako je prikazano na drugom grafu, imali bi 28 promjena u danu. U slučaju vršnih opterećenja imali bi jedno 10-minutno vršno opterećenje (15:50 - 16:00) te jedno 20-minutno (16:20 - 16:40), a između toga povratak na niži prometni plan.

Takvo "skakanje" nije dobro i radi upravo suprotno od željenog, kao što sam opisao u ovoj temi.

Zato se za prognozu (upravljanje) prometa radi eksponencijalno izglađivanje. O ovoj metodi ima puno dobrih hrvatskih izvora pa ću kratko opisati primjenu na našem primjeru.

Aktualna (upravljačka, a moguće i prediktivna) izglađena vrijednost S(t) jednaka je umnošku koeficijenta "alfa" i aktualne izmjere vrijednosti x(t) zbrojene sa umnoškom recipročne vrijednosti koeficijenta "alfa" i prethodne izglađene vrijednosti S(t-1). Razumljivo, "alfa" se kreće između 0 i 1. Koeficijent se može uzeti kao neka fiksna vrijednost, ali kod upravljanja prometom učinkovitije je mijenjati na sljedeći način:

Ako je aktualna izmjerena vrijednost veća od prethodno izmjerene, onda promet raste i u interesu nam je biti što bliže krivulji rasta prometa kako bi na vrijeme promijenili prometni plan. Ako je aktualna vrijednost manja, onda promet pada, ali to može biti privremeno pa ćemo veću težinu dati prethodnom stanju. U našem primjeru primijenio sam parametre za "alfa" od 0,80 u slučaju rasta prometa, a 0,20 u slučaju pada. Graf pokazuje isprekidanu plavu crtu - krivulju eksponencijalnog izglađivanja. U slučaju rasta prometa krivulja je gotovo priljubljena uz izmjerene vrijednosti, a u drugom slučaju vidljivo je "kašnjenje". To "kašnjenje" je najbolje vidljivo u vršnom periodu kada je postignut kontinuitet vršnog prometnog plana u šest 10 minutnih intervala; na taj način je eksponencijalno izglađivanje izbjeglo nepotrebno prebacivanje prometnih planova. U odnosu na već prethodno spomenutih 28 promjena eksponencijalno izglađivanje zahtijeva 18 promjena u danu (narančasti dio krivulje). To je isto puno, ali i predstavlja dobru prvu iteraciju za određivanje strategije upravljanja prometom. Pažljivija analiza identificira grupe podataka gdje bi se trebale dogoditi promjene prometnog plana:

  • dvije izmjene između 7:30 - 8:30 za uključivanje drugog i povratak u prvi plan,
  • treća oko 10:45 za ulazak u drugi plan,
  • četvrta u 14:20 za ulazak u treći plan,
  • peta i šesta za vršni (četvrti) plan 15:50 - 16:50,
  • sedma izmjena u 19:10 sati za smanjenje iz trećeg u drugi plan i
  • osma u 21:10 sat za povratak u prvi prometni plan.

Budući postoji jasna razlika između izmjerene i izglađene vrijednosti dobro je promisliti da li bi izbor koeficijenta "alfa" koji bi minimizirao kvadrat odstupanja između ove dvije vrijednosti polučio bolji rezultat. Primjenom Excela rješenje je 0,51 i graf pokazuje da izglađena vrijednost dobro slijedi aktualne vrijednosti, ali takvo izglađivanje ima 20 izmjena u danu. Ovaj pristup dobar je za prezentaciju podataka, ali ne i za upravljanje.

Sljedeća metoda je metoda pomičnih prosjeka. Obično se ova metoda prikazuje prije eksponencijalnog izglađivanja jer je formalno slabija. Određivanje vrijednosti pomoću pomičnog prosjeka zasniva se na određivanju prosječne vrijednosti (aritmetičke sredine) nekoliko prethodnih podataka. Na taj način sve prethodne vrijednosti imaju istu težinu, dok kod eksponencijalnog izglađivanja najbliža vrijednost ima najveći utjecaj. To je prije svega prognostički, a ne interpretativni model kao što ću ga ja koristiti. Ipak i za interpretaciju podataka ima svoje prednosti. Načelo je jednostavno: što više prethodnih intervala uzmemo u obzir to će krivulja biti više "izglađena". Graf ilustrira razlike "izglađenosti" krivulja za različiti broj intervala. Ako želimo biti što bliže aktualnim podatcima onda su tri intervala prava mjera. U slučaju prikazivanja trenda onda je u ovom slučaju bolje uzeti šest intervala, odnosno prosjek prethodnog sata.

Ako u željeni pomični prosjek ugradimo i interval pouzdanosti onda dobivamo dnevnu krivulju trenda koja nam cjelovito opisuje odvijanje prometa. Na slici je prikazan interval pouzdanosti za razinu pouzdanosti (povjerenja) 0,95.

Podatci o prometnom toku cestovnog prometa nisu ništa bez podataka o strukturi prometnog toka, koliko različitih kategorija sudjeluje u prometnom toku. Na početku sam naglasio da to nije predmet istraživanja ove teme. Čitatelja/icu upućujem na Internet stranice tvrtke Hrvatske ceste d.o.o. gdje mogu skinuti godišnje brošure o brojanjima prometa na hrvatskim cestama. U tim brošurama je stručno i cjelovito objašnjeno sve o načinima brojanja i prikaza različitih kategorija vozila; od naplata cestarine do različitih tehnologija brojila prometa.

Automatska brojila prometa daju nam podatke o kretanju svakog vozila, njegovoj duljini (kategoriji), načinu i vremenu njegova pojavljivanja nakon prethodnog vozila. Mikroskopsko promatranje prometnog toka obradio sam u ovoj temi pa nema smisla ponavljati.

Prikazane su metode: puni (kalendarski) sat, u kraćim intervalima glede identifikacije kritičnih vremena u satu i/ili tijekom dana, pokazatelji deskriptivne statistike, pretpostavljena i potvrđena funkcija distribucije vjerojatnosti slučajne veličine, metoda eksponencijalnog izglađivanja i metoda pomičnih prosjeka. Taj dan preko ovog brojila je prošlo 8.859 vozila u 24 sata. Različite interpretacije podataka o broju vozila u prometnom toku pokazuju različite brojeve i svi su točni. Svaka metoda prikladna je za određenu razinu; operativci će koristiti eksponencijalno izglađivanje u kraćim vremenskim intervalima (postoje intervali vršnog prometa koji traju 60 minuta), taktičari metode pomičnog prosjeka i funkcije distribucije vjerojatnosti (dnevni promet ima svojstva normalne razdiobe), a stratezi deskriptivnu statistiku (postoji jako mala pozitivna asimetrična distribucija) te satne histograme (prvi grafički prikaz u ovoj temi).

Zdenko Lanović
2021.
Izradio Webnode
Izradite web-stranice besplatno! Ova web stranica napravljena je uz pomoć Webnode. Kreirajte svoju vlastitu web stranicu besplatno još danas! Započeti